Deformed permutahedra An inductive construction of the submodular cone

Germain Poullot with Georg Loho & Arnau Padrol

1 October 2025, Stockholm

- Deformations (a.k.a. Minkowski summands)
 - Deformations
 - Cone of deformations
- Deformed permutahedra = submodularity
 - Combinatorics of the permutahedron
 - Submodular functions
- Submodular Cone in general
 - Known facts about \mathbb{SC}_n
 - Submodular cone n = 4 (and n = 5)
- 4 Inductive construction of (rays of) \mathbb{SC}_n
 - GP-sum
 - Rays of \mathbb{SC}_n

Deformations (a.k.a. Minkowski summands)

Definition

P, Q polytopes. Minkowski sum:

$$P + Q = \{ \boldsymbol{p} + \boldsymbol{q} \ ; \ \boldsymbol{p} \in P, \ \boldsymbol{q} \in Q \}$$

N.B. $Vert(P + Q) \subseteq Vert(P) + Vert(Q)$

Definition

Q is a *Minkowski summand*, a.k.a. *deformation*, of P when there exists R and $\lambda > 0$ with:

$$\lambda \mathsf{P} = \mathsf{Q} + \mathsf{R}$$

Definition

Q is a *Minkowski summand*, a.k.a. *deformation*, of P when there exists R and $\lambda > 0$ with:

$$\lambda P = Q + R$$

 $\begin{array}{l} \textit{Deformation cone} \colon \mathbb{DC}(P) = \big\{Q \; ; \; Q \; \text{is a deformation of P} \big\} \\ \textit{Minkowski indecomposable} \colon \text{deformations of P are dilations of P} \\ \end{array}$

Definition

Q is a *Minkowski summand*, a.k.a. *deformation*, of P when there exists R and $\lambda > 0$ with:

$$\lambda \mathsf{P} = \mathsf{Q} + \mathsf{R}$$

 $\begin{array}{l} \textit{Deformation cone} \colon \mathbb{DC}(P) = \big\{Q \; ; \; Q \; \text{is a deformation of P} \big\} \\ \textit{Minkowski indecomposable} \colon \text{deformations of P are dilations of P} \\ \end{array}$

What is the best way to write P as a Minkowski sum?

- With the fewest number of (indecomposable) summands?
- With the (indecomposable) summands of smallest dimension ?
- Respecting some symmetries ?
- . . .

Definition

Q is a *Minkowski summand*, a.k.a. *deformation*, of P when there exists R and $\lambda > 0$ with:

$$\lambda \mathsf{P} = \mathsf{Q} + \mathsf{R}$$

 $\begin{array}{l} \textit{Deformation cone} \colon \mathbb{DC}(\mathsf{P}) = \big\{ \mathsf{Q} \; ; \; \mathsf{Q} \; \text{is a deformation of P} \big\} \\ \textit{Minkowski indecomposable} \colon \text{deformations of P are dilations of P} \\ \end{array}$

What is the best way to write P as a Minkowski sum?

- With the fewest number of (indecomposable) summands?
- With the (indecomposable) summands of smallest dimension ?
- Respecting some symmetries ?
- . . .
- \implies What is the structure of $\mathbb{DC}(P)$?

Faces

Definition

Polytope: convex hull of finitely many points in \mathbb{R}^n

bounded intersection of finitly many half-spaces in \mathbb{R}^n

Definition

Face:
$$\mathsf{P}^{m{c}} := \left\{ m{x} \in \mathbb{R}^n \; ; \; \langle m{x}, m{c}
angle = \mathsf{max}_{m{y} \in \mathsf{P}} \langle m{y}, m{c}
angle
ight\}$$

Ρ

Faces

Definition

Polytope: convex hull of finitely many points in \mathbb{R}^n

bounded intersection of finitly many half-spaces in \mathbb{R}^n

Definition

Face:
$$\mathsf{P}^{m{c}} := \{m{x} \in \mathbb{R}^n \; ; \; \langle m{x}, m{c} \rangle = \mathsf{max}_{m{y} \in \mathsf{P}} \langle m{y}, m{c} \rangle \}$$

Ρ

Faces

Definition

Polytope: convex hull of finitely many points in \mathbb{R}^n

bounded intersection of finitly many half-spaces in \mathbb{R}^n

Definition

Face:
$$\mathsf{P}^{m{c}} := \left\{ m{x} \in \mathbb{R}^n \; ; \; \langle m{x}, m{c}
angle = \mathsf{max}_{m{y} \in \mathsf{P}} \langle m{y}, m{c}
angle
ight\}$$

Ρ

Definition

Definition

Definition

Definition

Minkowski sum seen with normal fans

Lemma

 $\mathcal{N}_{\mathsf{P}+\mathsf{Q}} = \textit{common refinement of } \mathcal{N}_{\mathsf{P}} \ \textit{and } \mathcal{N}_{\mathsf{Q}}$

Minkowski sum seen with normal fans

Lemma

 $\mathcal{N}_{P+Q} = \text{common refinement of } \mathcal{N}_{P} \text{ and } \mathcal{N}_{Q}$

Deformations

 \mathcal{N}_P : Normal fan of polytope P Coarsening: Choose maximal cones and merge them

Theorem

Q is a deformation of P iff \mathcal{N}_Q coarsens \mathcal{N}_P .

Deformations

 \mathcal{N}_{P} : Normal fan of polytope P

Coarsening: Choose maximal cones and merge them

Theorem

Q is a deformation of P iff \mathcal{N}_Q coarsens \mathcal{N}_P .

Deformations

 \mathcal{N}_{P} : Normal fan of polytope P

Coarsening: Choose maximal cones and merge them

Theorem

Q is a deformation of P iff \mathcal{N}_Q coarsens \mathcal{N}_P .

Deformations of 3-dim permutahedron

Permutahedron Π_4

Sequence of deformations of Π_4

Theorem

 $Q \ \textit{deformation of} \ P \ \iff \ \mathcal{N}_Q \unlhd \mathcal{N}_P$

Definition

Height deformation cone: $\mathbb{DC}(P) = \{Q \; ; \; \mathcal{N}_Q \unlhd \mathcal{N}_P\}$

Theorem

Q deformation of P \iff $\mathcal{N}_Q \unlhd \mathcal{N}_P$

Definition

Height deformation cone: $\mathbb{DC}(P) = \{Q \; ; \; \mathcal{N}_Q \unlhd \mathcal{N}_P\}$

Theorem

 $Q \ \textit{deformation of} \ P \ \iff \ \mathcal{N}_Q \trianglelefteq \mathcal{N}_P$

Definition

Height deformation cone: $\mathbb{DC}(P) = \{Q \text{ ; } \mathcal{N}_Q \unlhd \mathcal{N}_P\}$

Theorem

 $Q \ \textit{deformation of} \ P \ \iff \ \mathcal{N}_Q \trianglelefteq \mathcal{N}_P$

Definition

Height deformation cone: $\mathbb{DC}(P) = \{Q ; \mathcal{N}_Q \leq \mathcal{N}_P\}$

Theorem

 $Q \ \textit{deformation of} \ P \ \iff \ \mathcal{N}_Q \unlhd \mathcal{N}_P$

Definition

Height deformation cone: $\mathbb{DC}(P) = \{Q \; ; \; \mathcal{N}_Q \unlhd \mathcal{N}_P\}$

Theorem

Q deformation of P \iff $\mathcal{N}_Q \subseteq \mathcal{N}_P$

Definition

Height deformation cone: $\mathbb{DC}(P) = \{Q ; \mathcal{N}_Q \leq \mathcal{N}_P\}$

Theorem

Q deformation of P \iff $\mathcal{N}_Q \subseteq \mathcal{N}_P$

Definition

Height deformation cone: $\mathbb{DC}(P) = \{Q \text{ ; } \mathcal{N}_Q \unlhd \mathcal{N}_P\}$

Theorem

Q deformation of P \iff $\mathcal{N}_Q \unlhd \mathcal{N}_P$

Definition

Height deformation cone: $\mathbb{DC}(P) = \{Q \text{ ; } \mathcal{N}_Q \unlhd \mathcal{N}_P\}$

Parametrization:

height vector.

$$\mathbf{\textit{h}} = \left(\textit{h_{r}}\right)_{\textit{r} \text{ rays}}$$

Theorem

Q deformation of P \iff $\mathcal{N}_Q \unlhd \mathcal{N}_P$

Definition

Height deformation cone: $\mathbb{DC}(P) = \{Q \text{ ; } \mathcal{N}_Q \unlhd \mathcal{N}_P\}$

Parametrization:

height vector.

$$\mathbf{\textit{h}} = \left(\textit{h_{r}}\right)_{\textit{r} \text{ rays}}$$

Theorem

Q deformation of P \iff $\mathcal{N}_Q \unlhd \mathcal{N}_P$

Definition

Height deformation cone: $\mathbb{DC}(P) = \{Q \text{ ; } \mathcal{N}_Q \unlhd \mathcal{N}_P\}$

Parametrization:

height vector.

$${\pmb h} = ig(h_{\pmb r}ig)_{\pmb r \ {\sf rays}}$$

Theorem

Q deformation of P $\iff \mathcal{N}_Q \unlhd \mathcal{N}_P$

Definition

Height deformation cone: $\mathbb{DC}(P) = \{Q \text{ ; } \mathcal{N}_Q \unlhd \mathcal{N}_P\}$

Parametrization:

height vector:

$$m{h} = ig(h_{m{r}}ig)_{m{r} \ ext{rays}}$$

Theorem

Q deformation of P \iff $\mathcal{N}_Q \unlhd \mathcal{N}_P$

Definition

Height deformation cone: $\mathbb{DC}(P) = \{Q \text{ ; } \mathcal{N}_Q \unlhd \mathcal{N}_P\}$

Parametrization:

height vector.

$$\mathbf{\textit{h}} = \left(\textit{h_{r}}\right)_{\textit{r} \text{ rays}}$$

Wall-crossing inequalities:

linear inequalities on h

Theorem

Q deformation of P \iff $\mathcal{N}_Q \unlhd \mathcal{N}_P$

Definition

Height deformation cone: $\mathbb{DC}(P) = \{Q \; ; \; \mathcal{N}_Q \unlhd \mathcal{N}_P\}$

Parametrization:

height vector.

$$\mathbf{\textit{h}} = \left(\textit{h_{r}}\right)_{\textit{r} \text{ rays}}$$

Wall-crossing inequalities:

linear inequalities on h

$$P_{h} = \{x ; \langle x | r \rangle \leq h_{r} \}$$

Wall-crossing inequalities

If, with $\alpha_{s}, \alpha_{s'} > 0$

$$\alpha_{s}s + \alpha_{s'}s' + \sum_{r} \alpha_{r}r = 0$$

Wall-crossing inequalities

If, with $\alpha_s, \alpha_{s'} > 0$

$$\alpha_{s}s + \alpha_{s'}s' + \sum_{r} \alpha_{r}r = 0$$

then

$$\alpha_{\mathbf{s}}h_{\mathbf{s}} + \alpha_{\mathbf{s}'}h_{\mathbf{s}'} + \sum_{\mathbf{r}} \alpha_{\mathbf{r}}h_{\mathbf{r}} \ge 0$$

Summary on $\mathbb{DC}(P)$

 $\mathbb{DC}(P)$ is a ray = P Minkowski indecomposable $\mathbb{DC}(P)$ is simplicial cone = P has **unique** Minkowski decomposition

 $Deformed\ permutahedra = submodularity$

Permutahedron

Example (Permutahedron)

$$\Pi_n = \operatorname{conv}\left\{egin{pmatrix} \sigma(1) \\ \vdots \\ \sigma(n) \end{pmatrix} \; ; \; \sigma \; \operatorname{permutation of} \; \{1,\ldots,n\} \right\}$$

Permutahedron

Example (Permutahedron)

$$\Pi_n = \operatorname{conv} \left\{ egin{pmatrix} \sigma(1) \\ \vdots \\ \sigma(n) \end{pmatrix} \; ; \; \sigma \; \operatorname{permutation of} \; \{1,\ldots,n\} \right\}$$

Braid fan

Definition

Braid fan: arrangement of hyperplanes $H_{i,j} := \{x : x_i = x_j\}$

Braid fan

Definition

Braid fan: arrangement of hyperplanes $H_{i,j} := \{ \mathbf{x} : x_i = x_j \}$

Definition

Generalized permutahedron: deformation of Π_n

i.e. P generalized permutahedron iff \mathcal{N}_{P} coarsens braid fan

i.e. P generalized permutatahedron iff edges in directions $oldsymbol{e}_i - oldsymbol{e}_j$

Deformations of Π_4

Permutahedron Π_4

Sequence of deformations of Π_4

2-dimensional example

Wall-crossing inequalities:

$$h_A + h_B \ge h_{C'}$$

 $h_B + h_C \ge h_{A'}$
 $h_C + h_A \ge h_{B'}$
& 3 others ineq.

Polygonal face equations:

$$\ell_{a} - \ell_{a'} = \ell_{b} - \ell_{b'} = \ell_{c} - \ell_{c'} \\ \& \ \ell \in \mathbb{R}^{6}_{+}$$

Submodular functions

Definition

Submodular functions $\mathbf{h}: 2^{[n]} \to \mathbb{R}$

$$\forall A, B \subseteq [n], \ h(A) + h(B) \ge h(A \cap B) + h(A \cup B)$$

In bijection with generalized permutahedra:

$$P_{h} = \{x : \sum_{i \in A} x_i \le h(A) \text{ for all } A \subseteq [n]\}$$

Submodular Cone in general

Submodular Cone

Definition

Submodular cone: deformation cone of the permutahedron Π_n

	\mathbb{SC}_n
Dim (no lineal)	$2^{n}-n-1$
Dim (no lineal) # facets	$\binom{n}{2} 2^{n-2}$
# rays	unknown!

Submodular Cone for Π_3

Definition

Submodular cone \mathbb{SC}_n : deformation cone of the permutahedron Π_n

	\mathbb{SC}_n
Dim (no lineal)	$2^{n}-n-1$
# facets	$\binom{n}{2} 2^{n-2}$
# rays	unknown!

Definition

Submodular cone \mathbb{SC}_n : deformation cone of the permutahedron Π_n

Theorem (Faces of $\mathbb{DC}(P)$)

If Q deformation of P, then $\mathbb{DC}(Q)$ is a face of $\mathbb{DC}(P)$.

	\mathbb{SC}_n
Dim (no lineal)	$2^{n}-n-1$
# facets	$\binom{n}{2} 2^{n-2}$
# rays	unknown!

Definition

Submodular cone \mathbb{SC}_n : deformation cone of the permutahedron Π_n

Theorem (Faces of $\mathbb{DC}(P)$)

If Q deformation of P, then $\mathbb{DC}(Q)$ is a face of $\mathbb{DC}(P)$.

	\mathbb{SC}_n	$\mathbb{DC}(Asso_n)$
Dim (no lineal)	$2^{n}-n-1$	$\binom{n}{2}$
# facets	$\binom{n}{2} 2^{n-2}$	$\binom{n}{2}$
# rays	unknown!	$\binom{\overline{n}}{2}$
		simplicial!

Definition

Submodular cone \mathbb{SC}_n : deformation cone of the permutahedron Π_n

Theorem (Faces of $\mathbb{DC}(P)$)

If Q deformation of P, then $\mathbb{DC}(Q)$ is a face of $\mathbb{DC}(P)$.

	\mathbb{SC}_n	$\mathbb{DC}(Asso_n)$	Graph zono.	Nestohedra
	$2^{n}-n-1$	(n)	✓	✓
# facets	$\binom{n}{2} 2^{n-2}$	$\binom{\overline{n}}{2}$	✓	✓
# rays	unknown!	$\binom{\overline{n}}{2}$	×	X
		simplicial!		

Recall: dim = 11, nbr facets = 80

Recall: dim = 11, nbr facets = 80

Draw all generalized permutahedra? (ask computer)

```
Recall: dim = 11, nbr facets = 80   
Draw all generalized permutahedra ? (ask computer)   
22\ 107\ \text{faces} \qquad \qquad \text{(Please do not draw...)}
```

```
Recall: \dim = 11, nbr facets = 80

Draw all generalized permutahedra ? (ask computer)

22 107 faces (Please do not draw...)

\implies quotient by symmetries
```

Symmetries of the braid fan

 ${\it Braid\ symmetries}:\ permutation\ of\ coordinates\ +\ central\ symmetry$

Drawing SC₄

Recall: dim = 11, nbr facets = 80

Draw all generalized permutahedra ? (ask computer)

 $22\ 107\ \text{faces}$

 \Longrightarrow quotient by symmetries

Recall: dim = 11, nbr facets = 80

Draw all generalized permutahedra ? (ask computer)

22 107 faces

 \Longrightarrow quotient by symmetries

703 "faces"

Reduced face lattice of \mathbb{SC}_4

Reduced f-vector of \mathbb{SC}_n

Reduced \mathbb{SC}_n *f*-vector:

```
n = 3

dim \mathbb{SC}_3 = 4

(2, 2, 1, 1)

n = 4

dim \mathbb{SC}_4 = 11

(7, 25, 64, 127, 174, 155, 97, 39, 12, 2, 1)
```

Reduced *f*-vector of \mathbb{SC}_n

Reduced \mathbb{SC}_n *f*-vector:

$$n = 3$$

dim $\mathbb{SC}_3 = 4$
 $(2, 2, 1, 1)$
 $n = 4$
dim $\mathbb{SC}_4 = 11$
 $(7, 25, 64, 127, 174, 155, 97, 39, 12, 2, 1)$

Thanks to Winfried Bruns for helping compute!

Database for dim 1-4 & 19-26

```
n=5, dim \mathbb{SC}_5=26
*672
*24 026
*373 433
*3 355 348
 19 739 627
 81 728 494
 249 483 675
 579 755 845
 1 048 953 035
 1 501 555 944
 1 719 688 853
 1 587 510 812
 1 186 372 740
 719 012 097
 353 190 577
 140 265 886
 44 831 594
 11 464 559
*2 326 596
*372 031
*46 330
*4572
*355
*30
*2
*1
```

Graphical zonotopes & Nestohedra are sparse

With: Graphical Zonotopes 10 polytopes

Graphical zonotopes & Nestohedra are sparse

With: Graphical Zonotopes & Nestohedra 10 + 46 polytopes

Everything is quite negligible...

With: Graphical Zono & Nestohedra \subsetneq Hypergraphic Polytopes,

- + Shard Polytopes, Quotientopes,
- + Matroid Polytopes
- = 112 polytope (only...)

What about the rays of \mathbb{SC}_4 ?

Strawberry & Persimmon

Deformed permutahedra:

Minkowski indecomposable 🗸

Matroid Polytopes X

Persimmon

Strawberry & Persimmon

Deformed permutahedra:

Minkowski indecomposable 🗸

Matroid Polytopes 🗡

Hypergraphic polytopes X

Shard Polytopes X

Strawberry

Persimmon

Strawberry & Persimmon

Deformed permutahedra:

Minkowski indecomposable 🗸

Matroid Polytopes X
Hypergraphic polytopes X

Shard Polytopes X

Persimmon:

Polypositroid 🗡

Removahedron X

Strawberry

Persimmon

Theorem ((approximately) Nguyen, '78)

The number t_n of rays of \mathbb{SC}_n satisfies

$$2^{2^n \cdot n^{-3/2}} \leq t_n$$

Theorem ((approximately) Nguyen, '78)

The number t_n of rays of \mathbb{SC}_n satisfies

$$2^{2^{n} \cdot n^{-3/2}} \leq t_n$$

Theorem (Loho-Padrol-P., '25+)

The number t_n of rays of \mathbb{SC}_n satisfies

$$2^{2^n} \leq t_n$$

N.B.: By Upper Bound Theorem: $t_n \leq n^{2^n}$.

Precisely: $n-2 \le \log_2 \log_2 t_n \le n + \log_2 \log_2 n + 1$

Theorem (Loho-Padrol-P., '25+)

The number t_n of rays of \mathbb{SC}_n satisfies

$$2^{2^n} \leq t_n$$

Proof:

What's 2^{2^n} ?

Theorem (Loho-Padrol-P., '25+)

The number t_n of rays of \mathbb{SC}_n satisfies

$$2^{2^n} \leq t_n$$

Proof:

What's 2^{2^n} ?

Let $a_n = 2^{2^n}$.

Theorem (Loho-Padrol-P., '25+)

The number t_n of rays of \mathbb{SC}_n satisfies

$$2^{2^n} \leq t_n$$

Proof:

What's 2^{2^n} ?

Let $a_n = 2^{2^n}$. Then $a_{n+1} = a_n^2$.

Theorem (Loho–Padrol–P., '25+)

The number t_n of rays of \mathbb{SC}_n satisfies

$$2^{2^n} \leq t_n$$

Proof:

What's 2^{2^n} ?

Let $a_n = 2^{2^n}$. Then $a_{n+1} = a_n^2$.

 \Rightarrow I want to construct 1 rays of \mathbb{SC}_{n+1} for each **pair** of rays of \mathbb{SC}_n

Theorem (Loho–Padrol–P., '25+)

The number t_n of rays of \mathbb{SC}_n satisfies

$$2^{2^n} \leq t_n$$

Proof:

What's 2^{2^n} ?

Let $a_n = 2^{2^n}$. Then $a_{n+1} = a_n^2$.

 \Rightarrow I want to construct 1 rays of \mathbb{SC}_{n+1} for each **pair** of rays of \mathbb{SC}_n

Let's do an induction!

Inductive construction of (rays of) \mathbb{SC}_n

 P^+ , P^- : **opposite** faces, maximizing/minimizing e_{n+1} on P.

P⁺, P⁻: **opposite** faces, maximizing/minimizing e_{n+1} on P. Technical detail, projection $\mathbb{R}^{n+1} \to \mathbb{R}^n$:

P⁺, P⁻: **opposite** faces, maximizing/minimizing e_{n+1} on P. Technical detail, projection $\mathbb{R}^{n+1} \to \mathbb{R}^n$:

Theorem (Frank '11)

Deformed permutahedra are **uniquely** determined by their pair of top and bottom faces.

Thus, $P \mapsto (P^+, P^-)$ is a bijection:

What's the reciprocal bijection?

P⁺, P⁻: **opposite** faces, maximizing/minimizing e_{n+1} on P. Technical detail, projection $\mathbb{R}^{n+1} \to \mathbb{R}^n$:

Theorem (Frank '11)

Deformed permutahedra are **uniquely** determined by their pair of top and bottom faces.

Thus, $P \mapsto (P^+, P^-)$ is a bijection: $\mathbb{SC}_{n+1} \simeq (\text{roughtly } \mathbb{SC}_n^2)$

What's the reciprocal bijection?

Theorem (Frank '11)

Deformed permutahedra are **uniquely** determined by their pair of top and bottom faces: $P \mapsto (P^+, P^-)$ is a bijection.

GP-sum:
$$Q \boxdot P := (Q + \mathbb{R}^+) \cap (P + \mathbb{R}^-)$$

$$Q + \mathbb{R}^n_+$$

$$Q \to P$$

$$Q \to P$$

Theorem (Frank '11)

Deformed permutahedra are **uniquely** determined by their pair of top and bottom faces: $P \mapsto (P^+, P^-)$ is a bijection.

GP-sum:
$$Q \boxdot P := (Q + \mathbb{R}^+) \cap (P + \mathbb{R}^-)$$

$$Q + \mathbb{R}^n_+$$

$$Q \boxdot P := Q + \mathbb{R}^n_+$$

$$Q \boxdot P = Q \boxdot P$$

projection of
$$\mathbf{x} \in \mathbb{R}^{n+1}$$
 is $\downarrow(\mathbf{x}) := (x_1, \dots, x_n)$
lift of $\mathbf{x} \in \mathbb{R}^n$ is $\uparrow(\mathbf{x}) := (x_1, \dots, x_n, -\sum_{i=1}^n x_i)$
Reciprocal of $P \mapsto (\downarrow(P^+), \downarrow(P^-))$ is the map $(P, Q) \mapsto \uparrow(Q \boxdot P)$

GP-sum exists iff $P\subseteq (Q+\mathbb{R}^+)$ and $Q\subseteq (P+\mathbb{R}^-)$

GP-sum exists iff $P \subseteq (Q + \mathbb{R}^+)$ and $Q \subseteq (P + \mathbb{R}^-)$ iff for all $i \in [n], \sigma \in S_n$, we have $P_i^{\sigma} \leq Q_i^{\sigma}$

Inductive process on \mathbb{SC}_n

Theorem (Frank '11, rewritten)

There is a bijection between \mathbb{SC}_{n+1} and pairs $(P,Q) \in \mathbb{SC}_n^2$ with $\forall i, \sigma, P_i^{\sigma} \leq Q_i^{\sigma}$. Namely:

$$\begin{array}{ccc} P & \mapsto & \left(\mathop{\downarrow}(P^+), \mathop{\downarrow}(P^-) \right) \\ (P,Q) & \mapsto & \mathop{\uparrow}(Q \boxdot P) \end{array}$$

Inductive process on \mathbb{SC}_n

Theorem (Frank '11, rewritten)

There is a bijection between \mathbb{SC}_{n+1} and pairs $(P,Q) \in \mathbb{SC}_n^2$ with $\forall i, \sigma, P_i^{\sigma} \leq Q_i^{\sigma}$. Namely:

$$\begin{array}{ccc} P & \mapsto & \left(\downarrow (P^+), \, \downarrow (P^-) \right) \\ (P,Q) & \mapsto & \uparrow (Q \boxdot P) \end{array}$$

Problem: inductive process on \mathbb{SC}_n , not on the <u>face lattice</u> of \mathbb{SC}_n

Not inductive process on face lattice of \mathbb{SC}_n

Not inductive process on face lattice of \mathbb{SC}_n

Problem: P and Q rays of $\mathbb{SC}_n \Rightarrow \uparrow(Q \boxdot P)$ rays of \mathbb{SC}_{n+1}

Problem: P and Q rays of $\mathbb{SC}_n \not\Rightarrow \not= \uparrow(Q \boxdot P)$ rays of \mathbb{SC}_{n+1}

Problem: P and Q rays of $\mathbb{SC}_n \implies \not= \uparrow(Q \boxdot P)$ rays of \mathbb{SC}_{n+1}

Theorem (Loho–Padrol–P., '25+)

P, Q rays of $SC_n + small$ condition

 $\Rightarrow \exists \lambda > 0, t \in \mathbb{R}^n, \ (\lambda Q + t) \boxdot P \text{ ray of } \mathbb{SC}_{n+1}.$

Problem: P and Q rays of $\mathbb{SC}_n \not\Rightarrow \not= \uparrow(Q \boxdot P)$ rays of \mathbb{SC}_{n+1}

Theorem (Loho–Padrol–P., '25+)

P, Q rays of \mathbb{SC}_n + small condition $\Rightarrow \exists \lambda > 0, t \in \mathbb{R}^n, (\lambda Q + t) \square P$ ray of \mathbb{SC}_{n+1} .

Small condition: fertility

(P,Q) is *fertile* iff there exists $i \in [n]$ such that for all $\tau \in S_n$, either $P_i^{\tau} \neq \min_{\sigma \in S_n} P_i^{\sigma}$ or $Q_i^{\tau} \neq \max_{\sigma \in S_n} Q_i^{\sigma}$

Problem: P and Q rays of $\mathbb{SC}_n \not\Rightarrow \not= \uparrow(Q \boxdot P)$ rays of \mathbb{SC}_{n+1}

Theorem (Loho–Padrol–P., '25+)

P, Q rays of \mathbb{SC}_n + small condition $\Rightarrow \exists \lambda > 0, t \in \mathbb{R}^n, (\lambda Q + t) \square P$ ray of \mathbb{SC}_{n+1} .

Small condition: fertility

(P,Q) is *fertile* iff there exists $i \in [n]$ such that for all $\tau \in S_n$, either $P_i^{\tau} \neq \min_{\sigma \in S_n} P_i^{\sigma}$ or $Q_i^{\tau} \neq \max_{\sigma \in S_n} Q_i^{\sigma}$

Lemma

If (S,P) is fertile, then $(\uparrow(S\boxdot R),\uparrow(Q\boxdot P))$ is also fertile.

Good news: Fertility is hereditary!

Number of rays

Lemma (Consequently)

If $\{P_1, P_2, \ldots, P_r\}$ are rays of \mathbb{SC}_n with (P_i, P_j) fertile for all i, j, then there exist $\lambda_{i,j} > 0$, $\mathbf{t}_{i,j} \in \mathbb{R}^n$ such that $\left\{ \uparrow ((\lambda_{i,j} P_j + \mathbf{t}_{i,j}) \boxdot P_i) \; ; \; 1 \leq i,j \leq r \right\}$ are rays of \mathbb{SC}_{n+1} also pairwise fertile.

Number of rays

Lemma (Consequently)

If $\{P_1, P_2, \ldots, P_r\}$ are rays of \mathbb{SC}_n with (P_i, P_j) fertile for all i, j, then there exist $\lambda_{i,j} > 0$, $\boldsymbol{t}_{i,j} \in \mathbb{R}^n$ such that $\left\{ \uparrow ((\lambda_{i,j} P_j + \boldsymbol{t}_{i,j}) \boxdot P_i) \; ; \; 1 \leq i,j \leq r \right\}$ are rays of \mathbb{SC}_{n+1} also pairwise fertile.

I can construct 1 rays of \mathbb{SC}_{n+1} for each *fertile* pair of rays of \mathbb{SC}_n + fertility is conserved

 \Rightarrow I construct $ho^{2^{n-k}}$ rays of \mathbb{SC}_n , with $ho=\#(\text{fertile family of }\mathbb{SC}_k)$

Number of rays

Lemma (Consequently)

If $\{P_1, P_2, \ldots, P_r\}$ are rays of \mathbb{SC}_n with (P_i, P_j) fertile for all i, j, then there exist $\lambda_{i,j} > 0$, $\mathbf{t}_{i,j} \in \mathbb{R}^n$ such that $\left\{ \uparrow ((\lambda_{i,j} P_j + \mathbf{t}_{i,j}) \boxdot P_i) \; ; \; 1 \leq i,j \leq r \right\}$ are rays of \mathbb{SC}_{n+1} also pairwise fertile.

I can construct 1 rays of \mathbb{SC}_{n+1} for each *fertile* pair of rays of \mathbb{SC}_n + fertility is conserved

 \Rightarrow I construct $\rho^{2^{n-k}}$ rays of \mathbb{SC}_n , with $\rho=\#(\text{fertile family of }\mathbb{SC}_k)$

Theorem (Loho-Padrol-P., '25+)

For $n \geq 5$, the number of rays of \mathbb{SC}_n is bigger than

$$656^{2^{n-5}}$$

Going even further beyond

With this induction on (the face lattice of) \mathbb{SC}_n :

- Lower bound on the f-vector of \mathbb{SC}_n
- ullet Lower bound on the number of non-simplicial faces of \mathbb{SC}_n
- New partition of \mathbb{SC}_n
- ...

Thank you!

